Question
Given a list of N coins, their values being in an array A[], return the minimum number of coins required to sum to S (you can use as many coins you want). If it's not possible to sum to S, return -1
Below are the solutions by "greedy" and "dynamic programming"#include <cmath> #include <vector> #include <iostream> #include <algorithm> #include <stdio.h> #include <stdlib.h> using namespace std; // greedy int minCoins_greedy(vector<int> a, int sum) { sort(a.begin(), a.end(), greater<int>()); // sorted in descending order a.erase(unique(a.begin(), a.end()), a.end()); // remove duplicates int ret; for (int i = 0; i < a.size(); i ) { int remains = sum - a[i]; //cout << sum << " - " << a[i] << " = " << remains << endl; if (remains > 0) { ret = minCoins_greedy(a, remains); //cout << "ret: " << ret << endl; if (ret > 0) { cout << a[i] << " "; return ret; } } else if (remains == 0) { cout << a[i] << " "; return 1; } } return -1; } // dynamic programming #define MIN(a, b) ((a) == -1) ? (b) : min((a),(b)); int minCoins(vector<int> S, int sum) { int setSize = S.size(); int count[setSize 1][sum 1]; // For sum = 0, do not need any coins for (int i = 0; i < setSize 1; i ) count[i][0] = 0; // For empty set, it is impossible to sum to >0 // use -1 represents fail for (int j = 1; j < sum 1; j ) count[0][j] = -1; /* * cost func: * c(n, m) = min( c(n-1, m) , c(n, m-M[n]) 1 ) * ^^^^^^^^^ ^^^^^^^^^^^^^^^^ * don't take take M[n] */ for (int i = 1; i < setSize 1; i ) { for (int j = 1; j < sum 1; j ) { if ((j - S[i-1]) >= 0) { count[i][j] = MIN(count[i-1][j], count[i][j-S[i-1]] 1); } else count[i][j] = count[i-1][j]; } } // uncomment this code to print table /* for (int i = 0; i <= setSize; i ) { for (int j = 0; j <= sum; j ) printf ("%4d", count[i][j]); printf("\n"); } */ return count[setSize][sum]; } int main() { // Input to a sorted vector int size, sum; cout << "input 'size' and 'sum'" << endl; cout << "ex: 4 63" << endl; cin >> size >> sum; cout << "input coins" << endl; cout << "ex: 1 10 30 40" << endl; int* arr; arr = new int[size]; for (int i = 0; i < size; i ) { int c; cin >> c; arr[i] = c; } vector<int> vecArr(arr, arr size); // Output int out = minCoins(vecArr, sum); //int out = minCoins_greedy(vecArr, sum); cout << endl; if (out > 0) cout << "Minimum " << out << " coins needed" << endl; else cout << "Impossible" << endl; delete[] arr; return 0; }